Analysis of Heat Equations on Domains

Analysis of Heat Equations on Domains

eBook - 2005
Rate this:

This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp
properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics.


This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp
estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade.


The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs.

Publisher: Princeton, N.J. : Princeton University Press, c2005.
ISBN: 0691120161
Branch Call Number: ELECTRONIC BOOK
Characteristics: 1 online resource (xi, 284 p.) : ill.
Additional Contributors: ebrary, Inc
Call Number: ELECTRONIC BOOK

Opinion

From the critics


Community Activity

Comment

Add a Comment

There are no comments for this title yet.

Age

Add Age Suitability

There are no ages for this title yet.

Summary

Add a Summary

There are no summaries for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Quotes

Add a Quote

There are no quotes for this title yet.

Explore Further

Subject Headings

  Loading...

Find it at KCLibrary

  Loading...
[]
[]
To Top